
Multiple Inputs for Shared Computer Use Joyojeet Pal

ICTs & Ed in the developing world

- No clear empirical consensus on whether ICTs benefit
 - Math gains / contradictions
 - Benefits mostly supplemental
 - Drill gains
- TCO rarely part of calculations
- Development education experts rarely ICT experts
- Several operational factors:
 - Admin uptake
 - Curricular mapping
 - Constructivist learning?

Means of deploying ICTs

	Individua I	Group
Portable Devices	Laptops	Simputer
Fixed Devices	PCs, Refurbs	PCs, Thin Client, Refurbs

ICT & Education: A few things to work with

- Ideally involving teachers, but practically without
- Most usage shared
- Most software built for single user
- Sharing impacts collaboration and engagement

How do children share a computer?

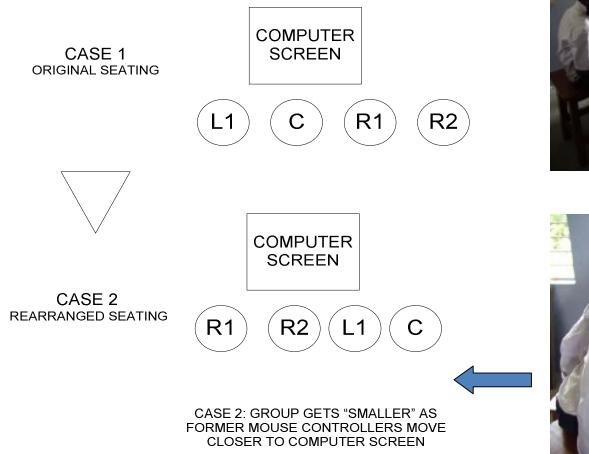
Can we find socio-economic patterns?

- Strong suggestion that seating patterns reinforce social and classroom inequalities
- Using the ANOVA test for Statistical Significance we find:
 - n The correlation between the position occupied by the student during the computer class and
 - p the **<u>student's family's economic position</u>** is statistically significant to over 95.1%
 - p and to a **<u>student's performance in class</u>** is statistically significant to over 99.8%

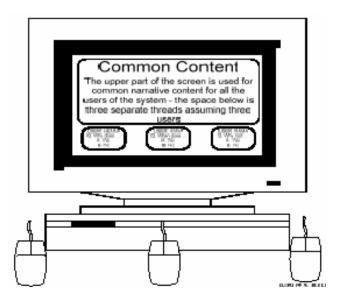
	Seating Position (n=102)								
	L2	L1	Т	R1	R2				
Class Performance	1.50	2.00	2.68	1.95	1.50				
Economic Affluence	2.00	2.36	2.68	2.24	1.00				

Computer Control Patterns

- Narrative modules less popular
- Center scrolls w/o much collaboration
 - Eye contact with screen poor
 - Sense of 'computer pride' hurts scroll pace
- Academically:
 - Choice of CAL module usually on center user
 - Over time, the mouse controller gains automatic default position in usage



Non-technical intervention

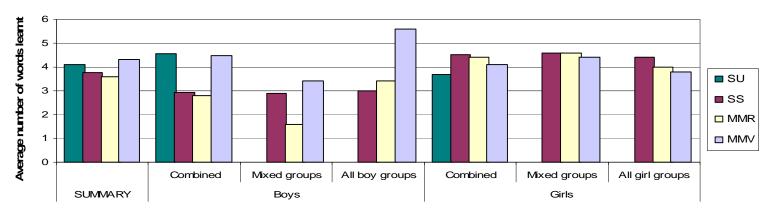


Conceptual design intervention

- Seat shuffle found effective only in short run, thus we concluded that two factors were critical to make CAL more effective:
- 1. Modular design for short seating length
- 2. Multi-user system design
 - Pedagogical Design needing children to talk
 - Physical Design shared input/interaction

Multiple Input V1: Race Mode

Image: Microsoft Research India



Multiple Input V2: Collaborative Clicking

- MSR-India wrote driver and application for MultiPoint
- Finding: Children learn basic retention tasks better in shared/collaborative scenarios

	Words Learnt	Engagement	Decision-making	Response error	Conflict (Boys)	Conflict (Girls)	Intra-group Competitiveness	Dominance by a child
SU	4.11	High, tails off	Individual	Low	n/a	n/a	n/a	n/a
SS	3.77	Low	Collaborative	Very Low	High	Low	Medium	Varied
MMR	3.6	Very High	Individual	Med-High	Low	Low	Very High	None
MMV	4.3	High	Collaborative	Very Low	Medium	Low	Low	Varied

Table 1: Findings Matrix for qualitative observations from experiments E1 and E2, N=238 ('Words Learnt' from E2)

CHI 2007 - Pawar, Pal, Gupta, Toyama

Multiple Input V3: Split Screens

- Based on finding that both collaboration and competition are needed
- Split screen
- Playing in teams
- Turn taking
- Collaboration
- Competition
- Scoring

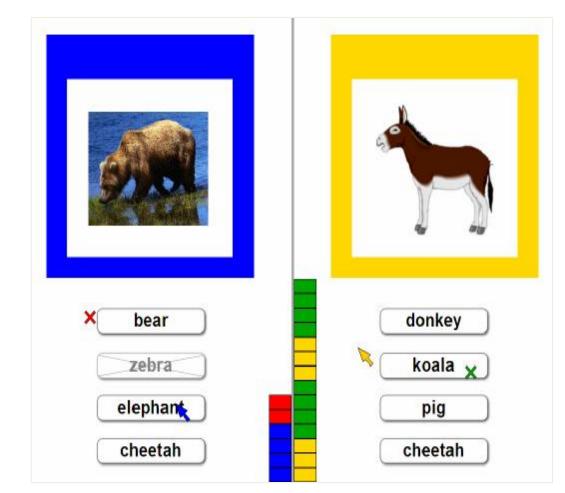


Image: Owen Otto (Otto et al. CSCW 2009)

Multiple Input V4: Multiple Keypads & Split Screens

- MultiMath
- Multiple Numeric Keypads
- Split screen
- Competition

Image: Clint Tseng (Garg et al. ICTD 2009)

Product Mode

- Over 170 schools worldwide, content+deployment
- Microsoft: MSRI, Unlimited Potential Grp, Imagine Cup
- Real World Deployments
 - Thailand
 - Vietnam
 - Phillippines

http://www.microsoft.com/unlimitedpotential/Transforming Education/MultiPoint.mspx

- Thankal amailiavaiaat@waahinatan adu